

Detailed Course Syllabus

Academic Year		2023/202	4 Semester	Semester Winter	
Study Program	Undergraduate study	Specialization Major in	For student Incoming Mobility	Year of Study 1.,2, 3	
I. BASIC	COURSE INFORMA	ATION			
Name	Intro	to Programming			
Abbreviation IZ		ZBEPSOC1	Code	251987	
Status		Elective	ECTS	6	
Prerequisites		No			
Total Cou	rse Workload				
Teaching Mode		Total Hours	Teaching Mode	Total Hours	
Lectures		45	Exercises	45	
Class Time and Place		CUC	- according to the p	oublished schedule	

II. TEACHING STAFF	
Course Holder	
Name and Surname Karlo Filipan	
Academic PhD Degree	Professional Assistant Professor
Contact E-mail karlo.filipan@unicath.hr	Telephone
Office Hours According to the published sched	

III. DETAILED COURSE INFORMATION

Teaching Language	English
-------------------	---------

Course Goals: Acquiring basic programming skills in Python programming language. Using Python for creation of simpler programs and as a scripting tool.

Course Description

Course Contents: Introduction to computers and programming. Python Integrated Development Environment. Basic data types. Global and local variables. Expressions and declarations. Arithmetic and logical operations. Flowchart and conditional code execution. Functions and block structure of the program. Input/output expressions and formats. Using program loops. Handling data arrays: string, list, set, dictionary, tuple. Reading and writing files. Python modules and their use. Version control using Git. Project work.

Expected Educational Outcomes

- 1. Demonstrate use of Python Integrated Development Environment.
- 2. Explain the basic principles of program design in Python.

- 3. Differentiate between data structures in Python.
- 4. Explain the manner of execution of existing programming code.
- 5. Outline project work for a simple programming task.
- 6. Create simpler programs during project work.

Textbooks and MaterialsRequiredSeverance, C. R. (2016). Python for Everybody. (PDF available online)
Lutz, M. (2014). Python Pocket Reference: Python In Your Pocket, Fifth Edition.
O'Reilly Media, Inc.
Official documentation on www.python.org/docSupplementaryBarry, P. (2016). Head first Python: A brain-friendly guide. O'Reilly Media, Inc.
Lutz, M. (2013). Learning Python, Fifth Edition. O'Reilly Media, Inc.

Examination and	Grading			
To Be Passed	Exclusively Continuous Assessment	NO	Included in Average Grade	YES
Prerequisites to Obtain Signature and Take Final Exam	 Regular class attendance Acquiring minimum 35/ and project work) 		O	
Examination Manner	 Continuous evaluation d work Final exam – passing gra 	O		and project

Obtaining points:

- 1. Class activities 70%:
 - a. Midterm exam 1 20%
 - b. Midterm exam 2 20%
 - c. Project work 30%
- 2. Final exam 30%

Grading Manner

Numerical scale for evaluating student work:

- Excellent (5) 90 do 100% of points
- Very good (4) 75 do 89,99% of points
- Good (3) 60 do 74,99% of points
- Sufficient (2) 50 do 59,99% of points
- Insufficient (1) 0 do 49,99% of points

Detailed Overview of Grading within ECTS

Activity	ECTS points	Percentage of the grade (%)
Attendance	2.25	0
Midterm exam 1	0.75	20
Midterm exam 2	0.75	20
Project work	1.125	30
TOTAL DURING CLASSES	4.875	70

Final exam	1.125	30
TOTAL POINTS	6	100

Midterm Exam Dates	7 th and 14 th week of lectures
Final Exam Dates	According to the published schedule

Lectures	
Week	Topic
1.	Computer, program, Integrated Development Environment
2.	Basic data types, variables and expressions
3.	Arithmetic and logical operations
4.	Flowchart and conditional execution
5.	Functions and block structure of the program
6.	Input/output expressions and formats
7.	Repetition; 1st midterm exam
8.	Loops and iterations; <i>Project work – initial considerations</i>
9.	Data arrays: string, list, set; Project work – planning
10.	Data arrays: dictionary, tuple; Project work – implementation
11.	Working with files; Project work – implementation
12.	Python modules; Project work – implementation
13.	Python modules; Project work – testing
14.	Repetition; 2 nd midterm exam
15.	Git and code versioning; Project work – final presentations
Seminars	
Week	Topic
1.	Computer, program, Integrated Development Environment
2.	Basic data types, variables and expressions
3.	Arithmetic and logical operations
4.	Flowchart and conditional execution
5.	Functions and block structure of the program
6.	Input/output expressions and formats
7.	Repetition; 1st midterm exam
8.	Loops and iterations; <i>Project work – initial considerations</i>
9.	Data arrays: string, list, set; <i>Project work – planning</i>
10.	Data arrays: dictionary, tuple; Project work - implementation
11	Working with files; Project work – implementation
11.	Working with thes, I roject work - implementation
11.	Python modules; <i>Project work – implementation</i>

13.	Python modules; Project work – testing
14.	Repetition; 2 nd midterm exam
15.	Git and code versioning; Project work – final presentations